Message

From: Strynar, Mark [/O=EXCHANGELABS/OU=EXCHANGE ADMINISTRATIVE GROUP

(FYDIBOHF23SPDLT)/CN=RECIPIENTS/CN=5A9910D5B38E471497BD875FD329A20A-STRYNAR, MARK]

Sent: 10/10/2019 7:19:34 PM

To: Mark Strynar [markstrynar@gmail.com]; Mary Strynar [marystrynar@yahoo.com]; Carole Strynar

[icstrynar@maine.rr.com]

Subject: FW: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER YET

A story on a paper we published yesterday.

Mark

From: Gillespie, Andrew < Gillespie. Andrew@epa.gov>

Sent: Thursday, October 10, 2019 3:07 PM

To: McCord, James <mccord.james@epa.gov>; Strynar, Mark <Strynar.Mark@epa.gov>

Cc: Medina-Vera, Myriam < Medina-Vera. Myriam@epa.gov>

Subject: FW: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER

YET

Can one of you send me a link to the published paper? Thanks, Andy

Andrew J. R. Gillespie, Ph. D.
Associate Director, US EPA/ORD/CEMM
ORD Executive Lead for PFAS R&D

Office 919 541 3655 Cel Ex. 6 Personal Privacy (PP)

From: Hines, Ronald < Hines.Ronald@epa.gov > Sent: Thursday, October 10, 2019 2:43 PM

To: Rodan, Bruce < rodan.bruce@epa.gov>; Gillespie, Andrew < Gillespie.Andrew@epa.gov>; Dunlap, David

<dunlap.david@epa.gov>

Cc: Cascio, Wayne < Cascio, Wayne@epa.gov>; Holt, Kay < Holt, Kay@epa.gov>; Jones, Samantha

<Jones.Samantha@epa.gov>; Russo, Bill <Russo.Bill@epa.gov>

Subject: FW: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER YET

I assume you saw the paper cited in the article shared by Erin below, as it must have gone through advance notification. But, I thought you might like to see the new article itself.

Ron

From: Hines, Erin < Hines. Erin@epa.gov > Sent: Thursday, October 10, 2019 2:09 PM

To: Hines, Ronald < Hines. Ronald@epa.gov>; Gray, Earl < Gray. Earl@epa.gov>; Conley, Justin < Conley. Justin@epa.gov>;

Wilson, Vickie < Wilson, Vickie@epa.gov >; Lau, Chris < Lau. Christopher@epa.gov >

Cc: Lambright, Christy < Lambright. Christy@epa.gov>; Evans, Nicola < Evans. Nicola@epa.gov>; Dixon, Aaron

<Dixon.Aaron@epa.gov>; Rogers, John M. <Rogers.John@epa.gov>

Subject: RE: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER

YET

130,000 ppt

http://pulse.ncpolicywatch.org/2019/10/09/breaking-new-analysis-indicates-that-toxics-were-present-in-wilmington-drinking-water-at-extreme-levels/

From: Hines, Ronald < Hines.Ronald@epa.gov > Sent: Thursday, October 10, 2019 1:51 PM

To: Gray, Earl <<u>Gray.Earl@epa.gov</u>>; Conley, Justin <<u>Conley.Justin@epa.gov</u>>; Wilson, Vickie <<u>Wilson.Vickie@epa.gov</u>>; Lau, Chris <<u>Lau</u>.Christopher@epa.gov>

Cc: Hines, Erin < Hines. Erin@epa.gov>; Lambright, Christy < Lambright. Christy@epa.gov>; Evans, Nicola < Evans. Nicola@epa.gov>; Dixon, Aaron < Dixon. Aaron@epa.gov>; Rogers, John M. < Rogers. John@epa.gov>

Subject: RE: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER YET

Earl,

Thanks for the information. Do you know what units are being used? Also, I learned that before Chemours provided an authentic standard for nation by-product 2, GenX was used as a standard assuming the signal would be the same for all PFAS. Because of this, the uncertainty around these numbers were 10-fold on either side.

Ron

From: Gray, Earl < Gray. Earl @epa.gov > Sent: Thursday, October 10, 2019 1:40 PM

To: Conley, Justin < Conley, Justin@epa.gov>; Wilson, Vickie < Wilson, Vickie@epa.gov>; Lau, Chris

<Lau.Christopher@epa.gov>

Cc: Hines, Ronald < <u>Hines.Ronald@epa.gov</u>>; Hines, Erin < <u>Hines.Erin@epa.gov</u>>; Lambright, Christy

<<u>Lambright.Christy@epa.gov</u>>; Evans, Nicola <<u>Evans.Nicola@epa.gov</u>>; Dixon, Aaron <<u>Dixon.Aaron@epa.gov</u>>; Rogers,

John M. <Rogers.John@epa.gov>

Subject: ARCHIVED CAPE FEAR RIVER SAMPLES REVEAL HIGH LEVELS OF PFAS JUST PUBLISHED, DONT HAVE PAPER YET

Σ(all targeted PFASs)		130,000	110,000
	ΣPΓEAS	130,000	110,000
	HydroEVE	20	<10
	NVHOS	19	<10
	Nation by-product 2	83	<10
	PFPrOPrA	780	790
	PEPA	200	280
PFEAs	PMPA	690	740
	PFO5DoA	200	153
	PFO4DA	350	330
	PFO3OA	6,300	7,000
	PFO2HxA	7,800	8,200
	PFMOAA	110,000	95,000

These samples were collected in 2015 from near Lock and Dam No. 1, near Wilmington. The first column indicates the concentrations for the compounds before researchers applied a chemical process called oxidization. The second column shows the concentrations after oxidization, which was applied in 2019 to the samples, which had been preserved.

	ΣPFEAS	990,000	960,000
	HydroEVE	1,200	<10
	NVHOS	44	<10
	Nafion by-product 2	670	<10
	PFPrOPrA	3,100	3,000
	PEPA	420	500
PFEAs	PMPA	1,300	1,000
	PFO5DoA	330	290
	PFO4DA	5,100	4,600
	PFO3OA	58,000	61,000
	PFO2HxA	180,000	190,000
	PFMOAA	730,000	710,000

These samples were collected in 2014 from near the Huske Lock and Dam near the Chemours facility. The first column indicates the concentrations for the compounds

before researchers applied a chemical process called oxidization. The second column shows the concentrations after oxidization, which was applied in 2019 to the samples, which had been preserved.